Functional groups

In organic chemistry, **functional groups** are specific groups of atoms within molecules that are responsible for the characteristic chemical reactions of those molecules. The same functional group will undergo the same or similar chemical reaction(s) regardless of the size of the molecule it is a part of. If we replaced the H-atoms in ethene with CH₃ groups, that would be a methyl group.

Functional groups are attached to the carbon backbone of organic molecules. They determine the characteristics and chemical reactivity of molecules. Functional groups are far less stable than the carbon backbone and are likely to participate in chemical reactions. Six common biological functional groups are

hydrogen, hydroxyl, carboxyl, carbonyl, amino, phosphate, and methyl.

The following is

1. A list of common functional groups. In the formulas, the symbols R and R' usually denotes an attached hydrogen, or a hydrocarbon side chain of any length, but may sometimes refer to any group of atoms.

The first carbon after the carbon that attaches to the functional group is called the alpha carbon.

Combining the names of functional groups with the names of the parent alkanes generates a powerful systematic nomenclature for naming organic compounds. Unfortunately not all listings of functional groups agree, and the British system avoids functional groups altogether, maintaining that it is a categorization that obscures what is really going on in organic chemistry.

The non-hydrogen atoms of functional groups are always associated with each other and with the rest of the molecule by covalent bonds. When the group of atoms is associated with the rest of the molecule primarily by ionic forces, the group is referred to more properly as a polyatomic ion or complex ion. And all of these are called radicals, by a meaning of the term *radical* that predates the free radical.

Notice that some important *classes* of molecules, like cyclic aromatics (conjugated hydrocarbon rings) and heterocycles (related) are not listed.

2. A (more useful) table of the main functional groups that are important in elementary biochemistry (but several are omitted).

3. Finally some infrared spectra to show how these types of groups can actually be identified in the spectra of planets and other astronomical objects.

Chemical class	Group	Formula	Structural Formula	Prefix	Suffix
Acyl halide	Haloformyl	RCOX		haloformyl-	-oyl Cl
Alcohol	Hydroxyl	ROH	R—Q H	hydroxy-	
Aldehyde	Aldehyde	RCHO	RH	0ХО-	-al H
Alkane*	Alkyl	RH	$R \left(\right)_{n}$	alkyl-	-ane H
Alkene*	Alkenyl	$R_2C=CR_2$	R_1 R_2 R_4	alkenyl-	-ene H H
Alkyne*	Alkynyl	RC≡CR'	RR'	alkynyl-	-yne H−C≡C−H
Amide	Carboxami de	RCONR ₂	R N R	carboxamido -	-amide
Amines	Primary amine	RNH₂	R∕ ^N ∕H H	amino-	-amine H H C H H H
	Secondary amine	R₂NH	H R—N R'	amino-	-amine
	Tertiary amine	R₃N	R-N R'	amino-	-amine
	4° ammonium ion	R₄N⁺		ammonio-	-ammonium -ammonium

Azo compound	Azo (Diimide)	RN₂R'		azo-	-diazene
Toluene derivative	Benzyl	RCH₂C₀H₅ RBn	R	benzyl-	1-(<i>substituent</i>)toluene
Carbonate	Carbonate ester	ROCOOR			alkyl carbonate
Carboxylate	Carboxylat e	RCOO-	R O O O O	carboxy-	-oate
Carboxylic acid	Carboxyl	RCOOH	ROH	carboxy-	-oic acid OH
Cyanates	Cyanate	ROCN	R CN	cyanato-	alkyl cyanate
	Thiocyanat e	RSCN	R ^S C _N	thiocyanato-	alkyl thiocyanate
Ether	Ether	ROR'	RR'	alkoxy-	alkyl alkyl ether
Ester	Ester	RCOOR'	R OR'		alkyl alkan oate
Haloalkane	Halo	RX	R—X	halo-	alkyl halide
Hydroperoxi de	Hydroperox y	ROOH		hydroperoxy-	alkyl hydroperoxide
Imine	Primary ketimine	RC(=NH)R '	R'H R'R'	imino-	-imine

	Secondary ketimine	RC(=NR <i>)R</i> '	R ["] R'	imino-	-imine
	Primary aldimine	RC(=NH)H	R H	imino-	-imine
	Secondary aldimine	RC(=NR') H	R ['] H	imino-	-imine
Isocyanide	Isocyanide	RNC		isocyano-	alkyl isocyanide
Isocyanates	Isocyanate	RNCO	R ^N CO	isocyanato-	alkyl isocyanate H ₃ C ^N C
	Isothiocyan ate	RNCS	RNCS	isothiocyanat 0-	alkyl isothiocyanate
Ketone	Ketone	RCOR'		keto-, oxo-	-one
Nitrate	Nitrate	RONO ₂		nitrooxy-, nitroxy-	alkyl nitrate
Nitrile	Nitrile	RCN	R— — N	cyano-	alkane nitrile alkyl cyanide
Nitrite	Nitrite	RONO		nitrosooxy-	alkyl nitrite
Nitro compound	Nitro	RNO ₂	R-N ⁺ 0-	nitro-	H C N O

Nitroso compound	Nitroso	RNO		nitroso-	
Peroxide	Peroxy	ROOR	RQR'	peroxy-	alkyl peroxide
Benzene derivative	Phenyl	RC_6H_5	R-	phenyl-	-benzene
Phosphine	Phosphino	R₃P		phosphino-	-phosphane
Phosphodies ter	Phosphate	HOPO (OR) ₂	HO R O R2 HO O R1	phosphoric acid di(<i>substituen</i> <i>t</i>) ester	di(<i>substituent</i>) hydrogenphosphate DNA
Phosphonic acid	Phosphono	RP(=O) (OH) ₂	R-ROH OH	phosphono-	<i>substituent</i> phosphonic acid
Phosphate	Phosphate	ROP(=0) (OH) ₂	R_O_R_OH OH	phospho-	
Pyridine derivative	Pyridyl	RC₅H₄N		4- pyridyl (pyrid in-4-yl) 3- pyridyl (pyrid in-3-yl) 2- pyridyl (pyrid in-2-yl)	-pyridine
Sulfide		RSR'			di(<i>substituent</i>) sulfide
Sulfone	Sulfonyl	RSO₂R'	R' R'	sulfonyl-	di(<i>substituent</i>) sulfone
Sulfonic acid	Sulfo	RSO₃H	R OH	sulfo-	<i>substituent</i> sulfonic acid

Sulfoxide	Sulfinyl	RSOR'	R R'	sulfinyl-	di(<i>substituent</i>) sulfoxide O Ph Ph
Thiol	Sulfhydryl	RSH	R—Ş H	mercapto-, sulfanyl-	-thiol

Group	Structure Properties		Types of Molecules
Hydrogen (—H)	-@	Polar or nonpolar, depending on which atom hydrogen is bonded to; involved in condensation and hydrolysis	Almost all organic molecules
Hydroxyl (—OH)	cyl — 🕢 🕢 Polar, involved in condensation and hydrolysis		Carbohydrates, nucleic acids, alcohols, some acids, and steroids
Carboxyl (— COOH)	H) Acidic; negatively charged when H ⁺ dissociates; involved in peptide bonds		Amino acids, fatty acids
Amino (— NH2)	E B B	Basic; may bond an additional H ⁺ , becoming positively charged; involved in peptide bonds	Amino acids, nucleic acids
Phosphate (— H2PO4)	hate (4) (4) (4) (4) (4) (4) (4) (4)		Nucleic acids, phospholipids
Methyl (—CH3)	CH3) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B		Many organic molecules; especially common in lipids

Table 3-1. Important Functional Groups in Biological Molecules

. . .

PAH features

(cm ⁺)	λ (microns)	FWHH (cm ⁻¹)	Assignment
			Major Bands
3040 3.29 30		30	Aromatic C-H stretch ($v = 1 \rightarrow v = 0$)
1615	6.2	30	Aromatic C-C stretch
1315-1250	7.6-8.0	70 - 200	Blending of several strong aromatic C-C stretching bands
1150	8.7		Aromatic C-H in-plane bend
890	11.2	30	Aromatic C-H out-of-plane bend for nonadjacent, peripheral H ator
			Minor Features
3085		* > *	Overtone and/or combination involving fundamentals in the 1810-1050 cm ⁻¹ (5.52-9.52 µm) range
2995	3.34	***	Overtone and/or combination involving fundamentals in the 1810-1050 cm ⁻¹ (5.52-9.52 µm) range
2940	3.4	"20"	Aromatic C-H stretch $(r = 2 \rightarrow r = 1)$
2890	.90		Overtone/combination band involving fundamentals in the 1810-1050 cm ⁻¹ (5.52-9.52 µm) range, aromatic C-H stretch (high v), aliphatic C-H stretch,?
2850 3.51		2011	Aromatic C-H stretch ($\nu = 3 \rightarrow \nu = 2$), aliphatic C-H stretch, overtone/combination band involving fundamentals in the 1810–1050 cm ⁻¹ (5.52–9.52 µm) range
2810			Aromatic C-H stretch (high ν), aldehydic C-H stretch, overtone/combination band involving fundamentals in the 1810–1050 cm ⁻¹ (5.52–9.52 μm) range
1960-1890	5.1-5.3	30	Combination of C-H out-of-plane and in-plane bend,?
1785-1755	5.6-5.7	40	Overtone of 885 cm ⁻¹ (11.3 µm) band; aromatic C-C stretch; Carbonyl C-O stretch?
1470-1450	6.8-6.9	30	Aromatic C-C stretch, aliphatic C-H deformation
840	11.9		C-H out-of-plane bend for doubly adjacent H atoms
790	12.7		C-H out-of-plane bend for triply adjacent H atoms
			Broad Components
2940	3.5	1000000	Overlap of C-H stretching modes, shifted by anharmonic effects,
3115-2740"	3.21-3.65*	·· 300*	with overtones and combinations of C-C stretch fundamentals in the 1670-1250 cm ⁻¹ (6-8 µm) region, alighatic C-H stretch??
- 1200 1810-1050°	- 8.5 5.52-9.52 ^b	"400"	Blending of many weak aromatic C-C stretching bands
880		"160"	Overlap of many aromatic C-H out-of-plane bending modes for nonadjacent as well as doubly and triply adjacent peripheral H-atoms
Red-Near-IR Continuum			Electronic transitions between low-lying levels in ionized and complexed PAHs and amorphous cachon particles
Mid-IR Continuum			Quasi-continuum formed by overlapping overtone and combination bands

EMISSION COMPONENTS: PROPERTIES AND ASSIGNMENTS

Pre-Planetary Nebula

This continuum-removed ISO SWS01 spectrum of the PPN IRAS 22272 + 5435 shows the 8- and 12- μ m emission plateaus due to the in-plane and off-plane bending modes of aliphatic side groups attached to an aromatic carbonaceous compound, for which the narrow emission features and their peak wavelengths are marked on the spectrum. Also shown are the unidentified emission features at 21 and 30 μ m (ref. 36). The error bars are 1^{σ} deviation of data points from different scans and detectors over each wavelength resolution element.

FIG. 5. The gas-phase products for Titan tholin analog synthesis. These simple molecules, which are breakdown products of the initial CH₄/N₂ mixture, are composed generally of hydrocarbons and nitrogen-containing species. They may be polymerized into solid tholin under the glow discharge mechanism described in this paper. The gas phase displays a rich chemistry with varied building blocks for Titan tholin analogs.

Tholins

FIG. 2. The IR spectrum of solid tholin material, displaying the chemical nature of the monomer units comprising this complex polymer. Tholins appear to be a complex mixture of heterocyclic hydrocarbons, nitriles, amines, and aliphatic structures from their IR signature. Each region of this IR spectrum is a distinct spectral signature denoting a very specific bond or molecular group (see Table II and Allamandola *et al.* 1989).

