Functional groups

In organic chemistry, functional groups are specific groups of atoms within
molecules that are responsible for the characteristic chemical reactions of
those molecules. The same functional group will undergo the same or
similar chemical reaction(s) regardless of the size of the molecule it is a
part of. If we replaced the H-atoms in ethene with CH; groups, that would
be a methyl group.

Functional groups are attached to the carbon backbone of organic
molecules. They determine the characteristics and chemical reactivity of
molecules. Functional groups are far less stable than the carbon backbone
and are likely to participate in chemical reactions. Six common biological
functional groups are

hydrogen, hydroxyl, carboxyl, carbonyl, amino, phosphate, and methyl.
The following is

1. A list of common functional groups. In the formulas, the symbols R and R’
usually denotes an attached hydrogen, or a hydrocarbon side chain of any
length, but may sometimes refer to any group of atoms.

The first carbon after the carbon that attaches to the functional group is
called the alpha carbon.

Combining the names of functional groups with the names of the parent
alkanes generates a powerful systematic nomenclature for naming organic
compounds. Unfortunately not all listings of functional groups agree, and the
British system avoids functional groups altogether, maintaining that it is a
categorization that obscures what is really going on in organic chemistry.

The non-hydrogen atoms of functional groups are always associated with each
other and with the rest of the molecule by covalent bonds. When the group of
atoms is associated with the rest of the molecule primarily by ionic forces, the
group is referred to more properly as a polyatomic ion or complex ion. And all
of these are called radicals, by a meaning of the term radical that predates the
free radical.

Notice that some important classes of molecules, like cyclic aromatics
(conjugated hydrocarbon rings) and heterocycles (related) are not listed.

2. A (more useful) table of the main functional groups that are important in
elementary biochemistry (but several are omitted).

3. Finally some infrared spectra to show how these types of groups can actually
be identified in the spectra of planets and other astronomical objects.
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Table 3-1. Impeortant Functional Groups in Eialngi:al Molecules

Group Structure Properties Types of Molecules

Hydrogen | () Polar or nonpolar, depending on which Almost all organic

(-—H) atom hydrogen is bonded to; involved in | molecules

condensation and hydrolysis

Hydroxyl | © & Polar; involved in condensation and Carbohydrates,

(~—0OH) hydrolysis nucleic acids,
alcohnls, some acids,
and steroids

Carboxyl @ Acidic; negatively charged when H™ MTIEED acids, fatty

( ) dissociates; involved in peptide bonds acids

COOH) &)

Amino (- & Basic; may bond an additional H, ”"'I?'lin'z' acids, nucleic

NHZ) M becoming positively charged; involved in |acids

G peptide bonds

Phosphate (/| Acidic: up to two negative charges when | Nucleic acids,

( @ H™ dissociates; links nuclectides in nucleic | Phospholipids

HIPO4) . | acids; enerpy-camer group in ATP

© r© EY group
L
Methyl [ Monpolar; tends to make molecules Many organic
(—CH3) hydrophobic molecules; especially

common in lipids
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PAH features
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This continuum-removed ISO SWS01 spectrum of the PPN IRAS 22272 + 5435 shows the 8- and 12-uym

emission plateaus due to the in-plane and off-plane bending modes of aliphatic side groups attached to an
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FIG. 5. The gas-phase products for Titan tholin analog svnthesis. These simple molecules, which are breakdown products of the initial CHy/N2 mixture, are
composed generally of hvdrocarbons and nitroges-containing species. They may be polymerized into solid tholin under the glow discharge mechanism described
in this paper. The gas phase displays a rich chemistry with varied building blocks for Titan tholin analogs
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FIG. 2. The [R spectrum of solid tholin matenal, displaving the chemical nature of the moncmer unils comprising (s complex polymer, Tholins appear to
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